百度UNIT技术负责人揭秘

2020-01-20 16:10 金融

百度 UNIT 技术负责人揭秘:如何让你的对话系统更智能

(公众号:)消息,百度开发者中心日前在中关村举办技术沙龙,面向第三方开发者,讲解了其远场语音技术、UNIT 技术、商业应用案例以及百度 AI 开放平台的接入方法,分享者均来自百度开发者中心各项技术的负责人。就其中重点的 UNTI 技术做了梳理。

分享 UNIT 核心技术的,是百度理解与交互技术平台(Understanding and Interaction Technology, UNIT)的技术负责人孙珂,他着重讲解了百度在理解与交互方面所做的工作,同时也介绍了背后的核心技术。

要明晰什么是 UNIT 技术,先看对话系统最简单的组成部分。

首先,当用户通过语音说出一条需求后,首先要经过 ASR 进行语音识别,转成文字,之后会进入语言理解(NLU)的部分,将文字中蕴含的”意图”和”词槽”提炼出来,并通过对话状态管理(DST)将其与历史的对话状态进行整合;此后计算机需要根据当前的对话状态,通过动作候选排序(POLICY)从后台用户配置的多个系统动作中,选择一个最符合当前状态的。得到应该执行的动作后,对话系统会再通过语言生成(NLG)和语音合成(TTS),与用户做出互动。

而在语言理解地部分,孙珂进一步解释道,要精准地让机器理解,重点是把握“意图”和其中的”词槽”。

通俗的来讲,要想理解一句话,光是看懂每个字是不够的,需要理解它背后所蕴含的需求和指令并将其转换为计算机能够识别的表达形式,这就是语言理解(NLU)。以“今晚六点帮我在全聚德预约一个包间,十个人”这句话为例,UNIT的NLU模型可以分析出来,其意图是要预定餐馆。同时其中还包含一些关键的条件信息,如餐厅是全聚德,时间是6点,这些叫做词槽。

除了语言理解之外,要想打造一个较为完善的对话系统,交互能力也是不可获取的。孙珂介绍了UNIT提供的两种交互能力:澄清与推荐。所谓澄清指的是,当用户的需求中缺乏一些必要条件时,需要对话系统主动发问,把必要条件全部集齐之后再去做最终的满足执行。而所谓推荐指的是,当用户订了餐厅后,机器还应帮他推荐打车的服务

百度UNIT技术负责人揭秘邯郸牛皮癣医院地址
聊城中医妇科医院
手麻是什么原因